Computational Materials Science and the Materials Genome Initiative

Peter W. Voorhees

Department of Materials Science and Engineering Center for Hierarchical Materials Design Northwestern University Evanston, IL

The Challenge: What do these have in common?

The Materials For The Skin And Engine Block Are Both Al Alloys

Flyer Crankcase

Copper precipitates

Gayle and Goodway, Science 1994

The Wright brothers created the first nanostructured material for aerospace applications

After 100+ Years of Alloy Development

"Al 319"

$Al_{88.08}Si_{7.43}Cu_{3.33}Mg_{0.22}Fe_{0.38}Mn_{0.24}Zn_{0.13}Ti_{0.12}Ni_{0.01}Cr_{0.03}Sr_{0.03}$

Traditional Approach

 Huge barrier to the introduction of new materials

Materials Development

Solution:

Integrate computations, experimental tools, and digital data to speed up the design

Materials Genome Initiative for Global Competitiveness – June 2011

Fundamental databases and tools enabling reduction of the 10-20 year materials creation and deployment cycle by 50% or more

- Developing a Materials Innovation Infrastructure
 - Integrated experimental, computational, and data informatics tools
 - Span entire materials continuum
 - Open-access/Open-source
- Achieving National Goals with Advanced Materials
 - Develop the *infrastructure* to design new materials
- Equipping Next Generation Materials Workforce
- Engaging all stakeholders
 - Government, academia, and industry

www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf

How to discover new compounds?

Databases via High Throughput DFT Calculations

- DFT Databases: Materials Project (LBL), Open Quantum Mechanical Database (NU), and AFLOW (Duke), ...
- For example, OQMD (OQMD.org, C. Wolverton) has thermodynamic and structural properties of 285,000 compounds "synthesized" on the computer
- This data can be mined to screen compounds for: Li-ion battery coatings, precipitates in Mg and Al alloys, high-efficiency thermoelectrics
- Accuracy? Metadata?

The looming Big Data Problem and the Challenge of Computing the Evolution of Interfaces in 3D

4D tomography of dendritic solidification

The Big Data Problem and Computing the Evolution of Interfaces in 3D

- Secondary arm spacing sets the fatigue life of the alloy
- It is not possible to compute the evolution the evolution of such a dendrite
- Typical data sets are 1-2 TB

J.W. Gibbs et al, Sci. Reports, 2015

250µm

Directed Self Assembly: Nano Lithography

The challenge of modeling hierarchical materials structure

Current State of the Art

Modeling Across Scales: Roadmapping Study for Connect

TMS Materials Models and Simulations Across Length and Time Scales Study

Selected recommendations:

- Develop initiatives that address uncertainty quantification and propagation (UQ/UP) across multiple models describing a range of material length and time scales
- Develop strong coupling methods that allow bidirectional communication between deformation and microstructural evolution models
- Develop focused research efforts addressing interfacial properties and nucleation effects, with particular emphasis on systematic studies that couple theory, experiments, and simulations across length and time scales
- Devise methods and protocols for taking into account rare events and extreme value statistical distributions

